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ABSTRACT

Cells are not passive bystanders in the process of hormonal signaling
and instead can actively customize hormonal action. While diffusing from
the plasma membrane to the nucleus, thyroid hormone is modified via the
action of thioredoxin fold–containing selenoenzymes known as deiodi-
nases. Whereas the type II deiodinase (D2) converts the prohormone
thyroxine (T4) to the biologically active T3, the type III deiodinase (D3)
converts it to reverse T3, an inactive metabolite. D3 also inactivates T3 to
T2, terminating thyroid hormone action. Therefore, D2 provides cells with
the ability to produce extra amounts of T3 and thus enhances thyroid
hormone signaling. In contrast, expression of D3 results in the opposite
action. In addition, the D2 protein is unique in that it can be switched off
and on via an ubiquitin-regulated mechanism, triggered by catalysis of T4.
Induction of D2 enhances local thyroid hormone signaling and energy
expenditure during activation of brown adipose tissue by cold exposure or
high fat diet. On the other hand, induction of D3 in myocardium and brain
during ischemia and hypoxia decreases energy expenditure as part of a
homeostatic mechanism to slow down cell metabolism in the face of limited
O2 supply.

INTRODUCTION

Cells are not passive bystanders in the process of hormonal signaling
and instead can customize the action of sexual hormones and other
steroids as well as thyroid hormones. For example, 5�-reductase or
P450 aromatase, respectively, transform testosterone into dihydrotes-
tosterone or estradiol, locally changing testosterone’s biological activ-
ity in opposite directions. A similar scenario exists in the case of the
deiodinases, enzymes that can locally activate or inactivate thyroid
hormone.
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Membrane transporters are necessary for thyroid hormone access to
the intracellular environment (1). Once inside the cells, thyroid hor-
mone diffuses towards the nucleus and eventually binds to its recep-
tors (TR), high affinity ligand-dependent transcription factors that
modify gene expression (2). Once inside the cells, the prohormone T4
can be transformed to the biologically active T3 molecule via the type
2 deiodinase (D2) or it can be inactivated to form reverse T3 via the
type 3 deiodinase (D3). Most importantly, T3 is also inactivated by D3,
preventing or terminating thyroid hormone action (3).

Deiodinases are dimeric integral-membrane thyroredoxin fold–
containing selenoproteins of approximately 60 kDa (dimer) (4–9). Each
dimer counterpart consists of a selenocystein-containing globular do-
main that is anchored to cellular membranes. D2 is retained in the
endoplasmic reticulum (ER) and generates T3 in the proximity of the
nuclear compartment (10). On the other hand, under normal circum-
stances D3 goes through the Golgi complex and reaches the plasma
membrane where it undergoes endocytosis and recycles via the early
endosomes (4). However, during ischemia (in the brain) or hypoxia D3
concentrates in the nucleus where it inactivates thyroid hormone and
minimizes the metabolic footprint of T3 (11). Thus, D2 confers cells
with the capacity to produce additional amounts of T3 and enhances
thyroid hormone signaling. In contrast, expression of D3 results in the
opposite action (Fig. 1). Furthermore, these events occur in the cell
without relative changes to plasma thyroid hormone levels (12, 13).

The D2 protein is unique in that it can be switched off and on via an
ubiquitin (Ub) regulated mechanism, triggered by catalysis of T4 (14–
16). It is assumed that T4 deiodination exposes Lys-residues in D2’s
globular domain that are subsequently conjugated to Ub. Moreover,
this results in inactivating D2 by disruption of the dimer formation
(14). Ub-D2 is not immediately taken up by the proteasome and in-
stead can be deubiquitinated and reactivated to produce another mol-
ecule of T3, repeating the cycle. While two Ub conjugases are involved
in the process of D2 ubiquitination (17, 18), the limiting components of
this pathway are two E3-ligase adaptors. These include the hedgehog-
inducible SOCS-box containing WSB-1 (19), and TEB4 (20) a ligase
involved in the ER-associated degradation (ERAD) program. In con-
trast, two Ub-specific proteases, USP20 and USP33, mediate deubi-
quitination and reactivation of Ub-D2 (15).

Thus, it is clear that thyroid hormone levels in the plasma do not
faithfully reflect thyroid hormone signaling in cells; this action takes
place inside the cell. A complex network of transcriptional and post-
transcriptional mechanisms regulating deiodinase expression is at
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work in health and disease, mediating rapid customization of thyroid
hormone signaling on a cell-specific basis.

DEIODINASES AND THE METABOLIC EFFECTS OF
THYROID HORMONE

Thyroid hormone levels hardly fluctuate in the plasma of healthy
individuals, as shown in a year-long study of serum levels of T4 and T3
(21). Thus, thyroid hormone–responsive metabolic processes are
turned on and off by thyroid hormone via deiodination pathways that
are taking place inside the target cells, seemingly invisible from the
plasma viewpoint (12).

A glimpse into this world is available through the studies in which
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FIG. 1. Thyroid hormone signaling: T3-target cells are not passive bystanders. Deiodi-
nases customize the action of thyroid hormone by augmenting or decreasing intracellular
T3 levels.
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D2 and D3 expression reciprocally affect energy expenditure in a
number of cell and animal models. For example, cAMP-dependent
induction of D2 expression during activation of brown adipocytes by
cold exposure or high fat diet enhances local thyroid hormone signaling
and energy expenditure, the absence of which prevents normal BAT
function (22–25). On the other hand, HIF-1�–dependent induction of
D3 in myocardium and brain during ischemia and hypoxia decreases
energy expenditure, supposedly as part of a homeostatic mechanism
to slow down cell metabolism in the face of limited O2 supply (26, 27).
In fact, D3 reactivation in disease states can be so powerful that it
compromises systemic thyroid economy, leading to euthyroid sick
syndrome (28). In rare instances, D3-mediated thyroid hormone
inactivation is so dramatic that it exceeds the thyroidal synthetic
capacity to sustain thyroid economy, leading to consumptive hypo-
thyroidism (29).

D2 expression is the target of a rapidly growing number of molecules
that accelerate energy expenditure and metabolic programs in cells
and animal models. These include bile acids (30), flavonols (31), and
chemical chaperones (32), which in turn confer protection against
diet-induced obesity. Insulin and PPAR� agonists are also bona fide
inducers of D2 in skeletal muscle (33). On the other hand, signaling
through the D2 pathway is dampened by ER stress (34) and the
LXR-RXR pathway (35), the metabolic consequence of which is cur-
rently under investigation.

During vertebrate embryogenesis, developmental signals control the
expression interplay between D2 and D3 in metabolic relevant tissues
such as BAT (36), pancreatic islets and skeletal muscle (37), explain-
ing how “systemic” thyroid hormone can affect local control of tissue
embryogenesis.

In the 3-day developmental snapshot during which BAT develops in
mice (E16.5–18.5), D2 expression is upregulated approximately 5-fold
and D3 expression decreases by 75%. This results in increased local net
T3 availability, whilst serum T3 remains unchanged. This rapid en-
hancement in thyroid hormone signaling is critical for the expression
of genes defining BAT identity, i.e., UCP1, PGC-1alpha, and Dio2 (36).
Notably, these changes in gene expression are observed in utero,
without a thermogenic challenge, which highlights the relevance of D2
and its ability to amplify thyroid hormone signaling in a developmen-
tal setting. The inactivation of the Dio2 gene as in the D2KO mouse
results in a permanent BAT thermogenic defect, compromising ther-
moregulation and the ability to dissipate excessive calories from diet
(22, 23).
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The D2 pathway seems to also be critical for skeletal muscle
development and function (37). Besides regulating insulin sensitiv-
ity in myocytes (33), D2-mediated T3 production is also required for
the T3-dependent expression of myogenic factors, such as MyoD,
which drive myocyte development. As in BAT, myocytes from D2KO
mice have impaired development and function supposedly due to
lower intracellular T3 generation. The control of the D2 pathway in
myocytes is dependent on the transcription factor Fox03, which
directly binds to the Dio2 promoter, upregulating D2 expression. The
fact that Fox03KO myocytes also display impaired cellular develop-
ment, easily reversed by the addition of exogenous T3 underscores
the physiological relevance of the Fox03/D2 interplay.

The opposite scenario is observed during development of the pan-
creatic �-cells, with D3 expression keeping thyroid hormone signal-
ing to a minimum, from late embryonic development throughout
adulthood (38). The late emergence of D3 expression at E17.5 is
restricted to insulin-positive cells, indicating a focused role in �- but
not �-cell development. Alpha-cell development occurs at a much
earlier phase of embryogenesis (by E9.5). As a result of untimely
expression of thyroid hormone, D3KO animals exhibit a reduction in
total islet area due to decreased �-cell area, insulin content, and
lower expression of key islet genes involved in glucose sensing,
insulin expression, and exocytosis. This is physiologically significant
given that adult D3KO animals are glucose intolerant due to im-
paired glucose-stimulated insulin secretion, without changes in pe-
ripheral sensitivity to insulin.

CONCLUSIONS

From a broad perspective, deiodination supports a new paradigm in
which hormones are activated or inactivated in a controlled fashion in
specific thyroid hormone-target tissues. The role played by the deiodi-
nases is analogous to 5�-reductase and P450 aromatase in sex steroid
metabolism and to 11�-hydroxysteroid dehydrogenase in glucocorti-
coid metabolism. Compared to the field of steroid metabolizing en-
zymes, drug development for the control of deiodination is in its pri-
mordial. The therapeutic potential is obvious: if the D2 pathway can be
harnessed pharmacologically, one should be able to control energy
expenditure and perhaps contribute for the treatment of obesity, type
2 diabetes, and the metabolic syndrome. In turn, pharmacological
control of the D3 pathway could help both metabolically and in the
process recovery of illnesses.
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DISCUSSION
Hochberg, Baltimore: So, I am a rheumatologist. There are studies, particularly

data from the Rotterdam Study, which have been confirmed in a couple of other
European cohorts showing that a common variant in the Dio2 gene is associated with
radiographic hip osteoarthritis, particularly the phenotype of decreased joint space
width but not necessarily accompanied by osteophytosis. So, my question is: how do the
common genetic variants in Dio2 affect the action of D2 at the cellular level in terms of
inducing the hyperthyroid phenotype, which I presume would be related to an increase
in catabolism of the chondrocyte, a catabolic phenotype of the chondrocyte?

Bianco, Miami: That’s a great point. Thank you. We have looked very extensively at
this polymorphism and could not find changes in D2 activity, even though the alteration
in coding sequence it is located in the loop that we described as critical for the enzyme
activity; however, enzyme kinetics are not changed. The hypothesis we tested was that
if D2 activity would be decreased by virtue of having the polymorphism, then what would
create a state of localized hypothyroidism? On the other hand, I suppose you could as
well have increased catabolic efficiency of the D2 enzyme and created a state of localized
hyperthyroidism. We just don’t know because the studies so far, including from Rotter-
dam and our own laboratory, could not identify catalytic activity changes in D2 caused
by the polymorphism. Alternatively, the association studies could reflect a gene linkage.
It could be that the polymorphism is linked to another gene that has not been identified
and this is an ongoing investigation in different labs.

Nestler, Richmond: Great presentation, but it actually raises a bit of a scary
possibility. The symptoms of hypothyroidism are very vague. Endocrinologists are fre-
quently getting patients coming saying, “I have these symptoms. I think I have hypo-
thyroidism,” and we have, with great assurance said, “Your thyroid tests are normal.
You don’t have hypothyroidism,” but if these individuals were to have some reason or
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genetic reason for over-activation of D3, our studies would suggest they are hypothyroid
and we can’t detect it.

Bianco, Miami: Right.
Nestler, Richmond: So what do you suggest we do?
Bianco, Miami: Well again, this goes back to the polymorphism and I’ll give you an

example. About 85% of all hypothyroid patients that we commonly treat with levothy-
roxine are satisfied. However, a small fraction of these patients, about 10% to 15%, are
never happy, never satisfied, even though serum TSH and free T4 levels are absolutely
normal. It turns out that a recent study performed in the UK suggests that those
unhappy hypothyroid patients are the ones that exhibit the Dio2 polymorphism. So, the
underlying hypothesis is that when we treat those patients with levothyroxine alone, we
are creating a state of brain hypothyroidism because D2 is so critical for the amount of
T3 in the brain. By giving a combined therapy of both T4 and T3 to those patients you
would actually fix that problem. That study was designed as a double-blind placebo-
controlled study that enrolled about 600 patients. It is the largest study done so far and
this is really promising in terms of treatment of hypothyroidism.

Reiser, Chicago: Thank you for a beautiful presentation. I was particularly in-
trigued by the cellular target customization of the signal. How widespread of a mecha-
nism do you think that is? Is this applicable to other systemic molecules?

Bianco, Miami: Oh, I see. Well yes, if you look at hormones you would think that this
is similar to what happens with testosterone, for example. You know testosterone serum
levels hardly fluctuate but you do have activation of testosterone to dihydrotestosterone
that it’s a much more potent molecule and you can actually have testosterone being
converted to estradiol in different tissues. So when you look at hormones, most molecules
do fluctuate in the plasma. However, levels of thyroid hormones and steroid hormones
are steady and they display this type of local control.

Gotto, New York: There are several thyroid agonists for the hepatic receptor in
clinical trials for lowering cholesterol and LDL. Is it known what they do to the
deiodinases?

Bianco, Miami: That’s a great question. Thank you. So, by developing these
thyroid hormone analogs that bind with higher affinity for TR-beta isoform of the
thyroid hormone receptor one utilizes the same strategy I discussed with the deiodi-
nases, that is to increase thyroid hormone action in a tissue-specific fashion. Even
though we are talking about deiodinase and this is a completely different strategy, the
goal is the same. However, the excitement with these analogs has decreased, even
though they worked very well. The planning of clinical trials has been halted because
of some serious side effects in the bone and the joints that were observed in dogs
treated with the analogues. Now, to answer your question, by virtue of activating
TR-beta, in fact, GC1 or other TR-beta analogs upregulate the type 1 deiodinase in the
liver, explaining an increase in the serum T3/T4 ratio given the increased fractional
conversion of T4 to T3.

Gotto, New York: I see. So this is not an off-target effect. This is mechanistically
related.

Bianco, Miami: Right. As explained exactly.
Bishopric, Miami: Tony that was a beautiful talk.
Bianco, Miami: Thank you.
Bishopric, Miami: My favorite T3 target cell is the cardiac myocyte and I wondered

if there is anything known about deiodinase expression during aging, for example, in
that tissue because we have a lot of alterations in the expression of thyroid hormone
toxicity in the heart with age.

Bianco, Miami: Right. No, unfortunately not. We would need to go and obtain the
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biopsies and it turns out that the mouse myocardium and the human myocardium are a
little bit different in terms of the types of deiodinase they express. Human myocardium
expresses type 2 deiodinase as opposed to the mouse in which you just don’t find D2.
However, that would be a very interesting topic for investigation. What we have shown
is that the D3 knockout mouse loses the ability to undergo normal cardiac remodeling,
developing cardiac-specific thyrotoxicosis and intense myocardial fibrosis. We’ve pub-
lished this paper recently and it seems that it’s actually the fibroblasts in the myocar-
dium that have enhanced capacity to produce collagen, thus creating fibrosis, and we are
actually looking further into that.
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